2 research outputs found

    UltraBots: Large-Area Mid-Air Haptics for VR with Robotically Actuated Ultrasound Transducers

    Full text link
    We introduce UltraBots, a system that combines ultrasound haptic feedback and robotic actuation for large-area mid-air haptics for VR. Ultrasound haptics can provide precise mid-air haptic feedback and versatile shape rendering, but the interaction area is often limited by the small size of the ultrasound devices, restricting the possible interactions for VR. To address this problem, this paper introduces a novel approach that combines robotic actuation with ultrasound haptics. More specifically, we will attach ultrasound transducer arrays to tabletop mobile robots or robotic arms for scalable, extendable, and translatable interaction areas. We plan to use Sony Toio robots for 2D translation and/or commercially available robotic arms for 3D translation. Using robotic actuation and hand tracking measured by a VR HMD (e.g., Oculus Quest), our system can keep the ultrasound transducers underneath the user's hands to provide on-demand haptics. We demonstrate applications with workspace environments, medical training, education and entertainment.Comment: UIST 2022 SI

    Sketched Reality: Sketching Bi-Directional Interactions Between Virtual and Physical Worlds with AR and Actuated Tangible UI

    Full text link
    This paper introduces Sketched Reality, an approach that combines AR sketching and actuated tangible user interfaces (TUI) for bidirectional sketching interaction. Bi-directional sketching enables virtual sketches and physical objects to "affect" each other through physical actuation and digital computation. In the existing AR sketching, the relationship between virtual and physical worlds is only one-directional -- while physical interaction can affect virtual sketches, virtual sketches have no return effect on the physical objects or environment. In contrast, bi-directional sketching interaction allows the seamless coupling between sketches and actuated TUIs. In this paper, we employ tabletop-size small robots (Sony Toio) and an iPad-based AR sketching tool to demonstrate the concept. In our system, virtual sketches drawn and simulated on an iPad (e.g., lines, walls, pendulums, and springs) can move, actuate, collide, and constrain physical Toio robots, as if virtual sketches and the physical objects exist in the same space through seamless coupling between AR and robot motion. This paper contributes a set of novel interactions and a design space of bi-directional AR sketching. We demonstrate a series of potential applications, such as tangible physics education, explorable mechanism, tangible gaming for children, and in-situ robot programming via sketching.Comment: UIST 202
    corecore